Меню

упражнения на формирование понятия уравнение

Методика работы над изучением уравнений в начальной школе

Методика работы над изучением уравнений в начальной школе

Математика – наука, которая нужна каждому человеку. В каждой области знания, в любой профессии нужна помощь математики.

Основная часть нашей жизни состоит из вычислений и подсчетов. Математика помогает развивать интеллект и находить решения в сложной задаче. Математика учит нас получать и приобретать знания, развивает внимание, логику, ясное мышление, умение делать выводы.

Уже с первого класса дети начинают задаваться вопросами: зачем мы изучаем математику? Чем она пригодиться в жизни?

Роль обучения в решении уравнений в начальной школе достаточно велика и ее сложно переоценить.

Во-первых, знания, умения и навыки, приобретенные школьниками при решении уравнений в начальной школе, помогут им в изучении математических дисциплин и будут способствовать скорейшему усвоению нового материала.

Во-вторых, обучение решению уравнений способствует развитию мышления у школьников, которое так необходимо не только при изучении стереометрии и геометрии в целом, но и в обыденной жизни, когда получить ответ на поставленный вопрос можно только владея навыками решения уравнений.

В-третьих, можно так же отметить, что обучение навыкам решения уравнений в начальной школе является своевременным и необходимым, так как именно в этом возрасте учащиеся лучше усваивают полученную от преподавателя информацию и с раннего возраста начинают понимать основные принципы и методики решения более сложных задач, заранее подготавливаясь к изучению высших математических дисциплин.

Основные подходы к обучению решению уравнений:

Раннее ознакомление детей с уравнением и способами его решения (М.И.Моро, М.А.Бантова, И.Э.Аргинская, Л.Г.Петерсон и др.) – с 1-2 класса.

Методика изучения уравнений:

1) Подготовительный

Изучать уравнения дети начинают уже с первого класса, используя в помощь различные фигуры или предметы:

Следующие действия, к которым переходят учащиеся, связаны с нахождением числа в «окошке»:

1. Какие записи верны?

3 + 5 = 8 7 + 2 = 10 10 – 4 = 5

Как изменить результат, чтобы записи стали верными??

2. Почитай выражение: 15 — в. Найди значение выражения, если в = 3, 4, 10, 11, 16.

3. Среди чисел, записанных справа, подчеркните то число, при подстановке которого в окошко, получится верное равенство.

2) Введение понятия «уравнение»

Учащимся сообщается, что в математике вместо □ используется латинские буквы (х, у, а, в, с) и такие записи называются уравнением: 3+х=6, 10 — х = 5. Важно на этом этапе закрепить у учащихся умение узнавать уравнение среди математических выражений: «Найди уравнение среди предложенных записей: х+5=6, х-2, 9=х+2, 3+2=5».

3) Формирование умения решать уравнения

Способы решения уравнений:

В курсе математики УМК «Школа России»:

  • подбор (его применение на первых этапах является необходимым для того, чтобы учащиеся усвоили суть решения уравнения);
  • на основе знания зависимости между компонентами и результатом арифметического действия.

По программе И.И.Аргинской (система обучения Л.В.Занкова):

  • подбор;
  • с использованием числового ряда, например: х+3=8
  • по таблице сложения;
  • с опорой на десятичный состав, например: 20+х=25. Число 20 содержит 2 десятка, 25 – это 2 десятка и 5 единиц, значит х=5 единицам;
  • на основе зависимости между компонентами и результатом действий;
  • с опорой на основные свойства равенств: 15●(х+2) = 6● (2х+7)

При проверке уравнения следует показать учащимся, что результат, полученный в левой части уравнения, нужно сравнить со значением в правой части. Необходимо добиться осознанного выполнения проверки.

4) Формирование умения решать задачи с помощью уравнений.

Процесс решения текстовой задачи с помощью уравнений состоит из следующих этапов:

1. Восприятие текста задачи и первичный анализ ее содержания.

выделение неизвестных чисел;

выбор неизвестного, которое целесообразно обозначить буквой;

переформулировка текста задачи с принятыми обозначениями;

запись полученного текста.

3. Составление уравнения, его решение, проверка, перевод найденного значения переменной на язык текста задачи.

4. Проверка решения задачи любым известным способом.

5. Формулирование ответа на вопрос задачи.

Виды упражнений, направленные на обучение младших школьников решению уравнений в учебниках математики УМК «Школа России»:

Вид упражнения

Пример задания

Задания с «окошками» и пропусками чисел

2) Какие числа пропущены?

3) Заполни пропуски так, чтобы равенства стали верными.

Нахождение уравнений среди других математических записей

1) Найди среди следующих записей уравнения, выпиши их и реши.

30+х>40 45-5=40 60+х=90 80-х 38-8 Авторизуйтесь, чтобы задавать вопросы.

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако редакция сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение редакции может не совпадать с точкой зрения авторов.

Источник

Методика изучения уравнений и способов их решения.

Методика изучения уравнений и способов их решения.

Уравнение в начальном курсе математики трактуется как равенство, содержащее букву (переменную). Решить уравнение — значит узнать, при каких значениях буквы (переменной) уравнение обращается в верное числовое равенство. Значение переменной, при котором уравнение обращается в верное числовое равенство, называют решением уравнения.

В учебнике М.И. Моро учащиеся решают уравнения двумя способами: 1) способом подбора (в простейших случаях); 2) способом, основанном на применении правил нахождения неизвестных компонентов арифметических действий.

В методике формирования у младших школьников представлений об уравнении можно выделить следующие этапы:

Читайте также:  видео упражнения для восстановления сухожилий

I этап – подготовительный. На этом этапе выполняются следующие два вида упражнений: 1) решаются способом подбора примеры с «окошком» вида  + 3 = 7;  — 4 = 2; 8 —  = 5;

2) раскрывается связь между компонентами и результатом действий сложения и вычитания (правила нахождения неизвестного слагаемого, уменьшаемого и вычитаемого).

Выполнение специальных упражнений – равенств с «окошками» является подготовкой для перехода к решению простейших уравнений вида х + 2 = 7; х — 5 = 4; 8 — х = 6, с которыми учащиеся знакомятся только во 2 классе (часть 1, с.68).

II этап – знакомство с уравнением и овладение способом его решения.

Введение понятия «уравнение» фактически сводится к замене «окошка» латинской буквой х и к введению термина «неизвестное число».

Ознакомление с уравнением можно начать с рассмотрением равенства с «окошком»:  + 4 = 7

К какому числу надо прибавить 4, чтобы получилось 7?

(Вместо «окошка» учащиеся подставляют одно за другим числа 0, 1, 2, 3, пока не найдут такое, которое подходит, чтобы получилось верное равенство).

Учитель объясняет, что в математике принято обозначать неизвестное число латинской буквой х (вставляет х в окошко).

х + 4 = 7 – это уравнение.

Решить уравнение – значит найти неизвестное число.

Чему равно неизвестное число в данном уравнении? (3).

На данном этапе очень важно сформировать осознанный и математически верный подход к решению уравнений, чтобы ученик сразу ориентировался на то, что подобранное им число он должен проверить, т.е. подставить его и выяснить, верное или неверное числовое равенство при этом получится.

Сначала уравнения решаются способом подбора (учащиеся могут при этом воспользоваться как знанием состава числа, так и вычислительными приемами сложения или вычитания в пределах 10).

Используя способ подбора, учащиеся смогут справиться и с решением уравнений на нахождение неизвестного уменьшаемого или вычитаемого. Например, 9 – х = 7. (Подставим вместо х один: 9 — 1  7, х  1; подставим число 2: 9 – 2 = 7, х = 2).

Аналогично в 3 классе вводятся уравнения вида х • 3 = 12, 5 • х = 10, х : 2 = 4, 6 : х = 3, которые также вначале решаются подбором с использованием табличных случаев умножения и деления.

Позднее, когда учащиеся усвоят знания связей между компонентами и результатами арифметических действий уравнения начинают решать на основе знаний правил нахождения неизвестного компонента.

Для решения уравнений вторым способом с помощью правила предлагается такое уравнение, которое дети не могут быстро решить способом подбора, например: х + 13 = 71.

Решение уравнения оформляется следующим образом:

х + 13 = 71 х — 5 = 27 32 — х = 8

х = 71 — 13 х = 27 + 5 х = 32 — 8

58 + 13 = 71 32 — 5 = 27 32 — 24 = 8

71 = 71 27 = 27 8 = 8

14 • х = 28 х : 6 = 12 48 : х = 4

х = 28 : 14 х = 12 • 6 х = 48 : 4

14 • 2 = 28 72 : 6 = 12 48 : 12 = 4

28 = 28 12 = 12 4 = 4

Ученики объясняют решение уравнения х + 13 = 71 так: читаю уравнение х плюс 13 равно 71 (сумма чисел х и 13 равна 71; х увеличить на 13 получится 71). В уравнении неизвестно первое слагаемое. Чтобы найти неизвестное слагаемое, нужно из суммы вычесть второе слагаемое. Из 71 вычтем 13, получим 58. Значит, х равен 58. Проверим: к 58 прибавим 13, получим 71. Получилось верное равенство 71 = 71, значит уравнение решено правильно .( 3 кл. ч 2 с. 20- объяснить самост)

Особенности ознакомления с уравнениями в курсе Л.Г. Петерсон

В 1 классе (часть 3, уроки 11 — 18) решаются уравнения на сложение и вычитание с фигурами, линиями и числами на основе взаимосвязи между частью и целым. Для решения этих уравнений достаточно применить уже известные учащимся правила:

Целое равно сумме частей.

Чтобы найти часть надо из целого вычесть другую часть.

На уроке 11 вводится понятие уравнения. Перед этим в устные упражнения целесообразно включать примеры с «окошками», решаемые на основе взаимосвязи «часть — целое»:

Затем рассматриваются способ решения уравнений на основе понятий «целое» и «части»:

1) х + 4 = 8 х и 4 — части, 8 — целое.

х = 8 — 4 Ищем часть, поэтому из целого вычитаем другую часть.

Во втором классе во второй части (урок 1) рассматриваются уравнений нового вида с умножением и делением (а • х = b , х : а = b , а : х = b .)

Учащиеся знакомятся еще с новым способом решения таких уравнений на основе правил на нахождение стороны и площади прямоугольника.

Для решения уравнений данного вида нельзя использовать правила о части и целом, так как второй множитель ( х • 4 = 12 ) — это не часть, а количество равных частей, на которое разбито целое.

В 3 классе (часть 1, урок 10) дается определение уравнения и корня уравнения; показывается решение уравнений на основе правил нахождения неизвестных компонентов действий:

— Если в равенство, содержащее переменную, подставить какое-нибудь число, то может получиться верное или неверное высказывание. Например, при x = 3 равенство x + 2 = 5 будет верным, а при x = 8 — неверным.

— Уравнением называют равенство, содержащее переменную, значение которой надо найти.

— Значение переменной, при котором из уравнения получается верное равенство, называют корнем уравнения. Решить уравнение — значит найти все его корни (или убедиться, что их нет).

Неизвестно слагаемое. Чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое.

Неизвестно уменьшаемое. Чтобы найти неизвестное уменьшаемое, надо к разности прибавить вычитаемое.

Неизвестно вычитаемое. Чтобы найти неизвестное вычитаемое, надо из уменьшаемого вычесть разность.

Неизвестен множитель. Чтобы найти неизвестный множитель, надо произведение разделить на известный множитель.

Неизвестно делимое. Чтобы найти неизвестное делимое, надо делитель умножить на частное.

Читайте также:  картинки упражнений при рассеянном склерозе

Неизвестен делитель. Чтобы найти неизвестный делитель, надо делимое разделить на частное.

Затем решаются уравнения более сложной структуры, которые после упрощения числовых выражений в правой части, сводятся к известным случаям: (х + 3) : 8 = 5.При решении таких уравнений рассуждаем так: 1) последнее действие – деление, значит задано частное. 2) неизвестное в делимом, чтобы найти неизвестное делимое, надо частное умножить на делитель: х + 3 = 5 8; х + 3 = 40.

3) получили сумму, неизвестно первое слагаемое, чтобы найти неизвестное слагаемое, надо из суммы вычесть известное слагаемое: х = 40 – 3; х = 37. Проверка: (37 + 3) : 8 = 5; 5 = 5.

Источник

Методическая разработка урока алгебры по теме «Корни уравнения»

Тип урока: урок открытия нового знания.

Создать условия для повторения и закрепления изученного ранее материала — понимания понятий «уравнение», «корень уравнения», «решить уравнение»; развития умений проверять, имеет ли решение уравнение, являются ли данные числа его корнями, определения возможного количества корней уравнения.
Способствовать развитию умения самостоятельно делать выводы и выводить определения, логического мышления учащихся.

Основные понятия: уравнение, корень уравнения, решить уравнение.
Межпредметное понятие: корень.
Предметное понятие: корень уравнения.

Владеют базовым понятийным аппаратом по теме урока: «уравнение», «корень уравнения», «решить уравнение»; умеют определять, является ли заданное число корнем уравнения, определять количество корней некоторых уравнений, работать с алгебраическим текстом (анализировать его, извлекать необходимую информацию)

Универсальные учебные действия

Познавательные: умеют отличать новое от уже известного с помощью учителя; добывать новые знания; находить ответы на вопросы, используя учебник, свой жизненный опыт и информацию, полученную на уроке, умеют устанавливать причинно-следственные связи, строить логическое рассуждение, умозаключение.
Регулятивные: умеют определять и формулировать цель на уроке с помощью учителя; проговаривать последовательность действий на уроке; работать по коллективно составленному плану; оценивать правильность выполнения действия; планировать своё действие в соответствии с поставленной задачей; вносить необходимые коррективы в действие после его завершения на основе его оценки и учёта характера сделанных ошибок; высказывать своё предположение.
Коммуникативные: умеют оформлять свои мысли в устной форме; слушать и понимать речь других; организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками.
Личностные: проявляют познавательный интерес к изучению предмета

проблемный урок с использованием технологии развития критического мышления (ТРКМ) и технологии деятельностного метода.

технология развития критического мышления, технология работы в сотрудничестве, деятельностного метода.

Стратегии смыслового чтения «Глоссарий» и «Ориентиры предвосхищения» («Верные, неверные утверждения»), «Вопросы после
текста», пазлы, ромашка Блума.

Карта целей урока «Корни уравнения»

• формулирует определение уравнения, определение корня уравнения, что значит решить уравнение;
• распознает уравнение среди различных выражений;

приводит примеры уравнений, корней уравнений;

доказывает, что число является корнем уравнения;

находит и исправляет ошибки в равенствах;

осуществляет самопроверку и оценивает свои результаты.

Фронтальная (Ф); индивидуальная (И); групповая (Г)

• Задания для самостоятельной работы, раздаточный материал (карточки с заданиями, пазлы);
• презентация PowerPoint, интерактивная доска;
• (кластер, ромашка Блума).

Ход урока

1. Организационный этап

Добрый день! Приятно видеть всех вас в классе, и я надеюсь, что сегодня у нас состоится полезный, продуктивный урок.

Сегодня вы будете работать в парах, индивидуально, коллективно. Каждый из вас будет осуществлять самоконтроль и самооценку своей деятельности на уроке, используя листы самооценки и критерии оценивания. (Приложение №1)

2. Мотивирование к учебной деятельности (1 мин.)

Мы с вами работаем над главой «Уравнения». Чем мы занимались на прошлом уроке? (Составляли уравнения по условию задачи)

Но уравнения в математике применяются не только для решения текстовых задач, а кроме математики уравнения нужны в физике, химии, биологии, экономике. Поэтому так важно учиться их решать.

3. Актуализация и фиксирование индивидуального затруднения в пробном учебном действии (5-7 мин.)

Устная работа. Подготовка к изучению нового материала.

1. Среди математических записей есть лишняя. Объясните, какая и почему?

2. Среди записей найдите уравнения

— Сформулируйте, что такое уравнение? (Уравнение — равенство, содержащее переменную, обозначенную буквой)

— Какими двумя свойствами характеризуются уравнения?

  • Равенство
  • Содержит букву в одной из его частей или обеих)

— Формирование обобщенного представления о межпредметном понятии.

Что изображено на рисунках?

— Что такое корень? (Слово «корень» имеет несколько значений, оно является многозначным.)

— Можно ли употреблять одно слово корень? (Нет. Обязательно корень чего-то.)

Слово «корень» употребляется в прямом и переносном смысле. (Выявление субъектного опыта)

Объясните следующие фразы:

  • Смотреть в корень (разг. фам.) — вникать в существо дела.
  • Вырвать с корнем — перен. уничтожить совсем.
  • Пустить корни — перен. прочно обосноваться.
  • Краснеть до корней волос — сильно краснеть (от стыда).
  • Корень зла — вина, первопричина, причина
  • Значит, корень – это основа чего – то.
  • О каких корнях пойдет сегодня речь на нашем уроке? О корнях уравнения.

4. Построение проекта выхода из затруднения (цель и тема, способ, план, средство) (3 мин.)

Как вы уже догадались тема нашего урока сегодня-это… КОРНИ УРАВНЕНИЯ. Сегодня мы с вами будем работать с уравнениями, с корнями уравнений. А сколько корней может иметь уравнение? А может ли уравнение не иметь совсем корней?

Попробуем сформулировать задачи нашего урока.

Простейшие уравнения вы уже решали в 5 и 6 классах. Задачей нашего сегодняшнего урока является расширение знаний о корнях уравнений, об их возможном количестве, совершенствование умений определять, является ли заданное число корнем уравнения, учиться определять количество корней некоторых уравнений, работать с алгебраическим текстом.

5. Реализация построенного проекта (10 мин.)

Посмотрите на список слов и отметьте те знаком «+», которые, как вам кажется, встретятся и помогут нам сегодня на уроке (предтекстовая стратегия): Приложение №2

Формирование понятия «корень уравнения»

Выпишем уравнения, с которыми мы встретились в начале урока, для каждого уравнения я предлагаю вам значения переменных. Ваша задача подставить значения и проверить верность равенства.

В уравнение 2х=10 подставить значения х=5; х=2

В уравнение 8(х-3) = 3х + 16 подставить значения х=1; х=8

Какие числа обратили уравнения в верные равенства? (х=5; х=8)

Что же такое корень уравнения?

Корень уравнения – число, при подстановке которого в уравнение получается верное числовое равенство.

Русское слово «корень» в данном случае — это яркий пример метафоры (переносное значение слова) в математическом языке: вспомните, как при решении текстовой задачи алгебраическим способом уравнение как бы вырастает из неизвестного числа х.

Сколько корней может иметь уравнение? (выслушиваются ответы учеников)

Ваши мнения разошлись. Постараемся разобраться в этом вопросе.

Предтекстовая стратегия смыслового чтения «Ориентиры предвосхищения»

На столах у вас лежат карточки с суждениями. Прочитайте суждения и отметьте те, с которыми вы согласны знаком «+», с которыми не согласны – знаком «-». Приложение № 3

«Верные-неверные утверждения»

Прочитайте суждения и отметьте те, с которыми вы согласны знаком «+», с которыми не согласны – знаком «-».

После чтения текста

Уравнение 4х=36 имеет один корень х=9

Уравнение не может иметь более одного корня

Уравнение х2= 9 имеет два корня — это числа х=-3 и х=3

Уравнение может иметь бесконечно много корней

Если в обеих частях уравнения стоят равные выражения, то корнем является любое число

Уравнение 2(х + 3) = 2х + 6 имеет один корень

Уравнение может не иметь корней

Уравнение х + 1 = х + 3 вообще не имеет корней

х=0 является корнем уравнения 58 : х = 0

После заполнения таблицы, заслушиваются версии учеников.

Чтобы разобраться в верности ваших ответов прочитайте текст учебника на стр. 108 (цель: проверка понимания читаемого текста). Отметьте суждения ещё раз после прочтения текста. Если ваш ответ изменился, объясните, почему это произошло (послетекстовая стратегия).

Работа с алгебраическим текстом учебника:

[Уравнение (х + 2) + (х + 2) + (х + 5) + (х + 5) = 50, имеет только один корень — число 9. Но уравнение может иметь и более одного корня. Например, у уравнения х 2 = 9 два корня — это числа -3 и 3.

Вообще уравнение может иметь сколько угодно корней, их даже может быть бесконечно много. Например, корнем уравнения 2(х + 3) = 2х + 6, в обеих частях которого стоят равные выражения, является любое число. Действительно, какое бы число мы ни ставили в это уравнение вместо переменной х, получится верное числовое равенство.

А вот уравнение х + 1 = х + 3 вообще не имеет корней, так при любом значении х левая часть уравнения на 2 меньше его правой части.]

После прочтения текста ученики заполняют правый столбик таблицы, уточная истинность или ложность суждений.

— Какие слова, из предложенного ранее списка вам пригодились?

В ходе обсуждения определяется возможное количество корней уравнения. После этого составляется схема «Количество корней уравнения», в которой нужно указать возможные случаи количества корней уравнения и привести примеры.

Ребята, на стр.108 прочитайте два предложения, разъясняющие смысл слов «решить уравнение». Объясните, почему они означают одно и то же.

Решить уравнение — значит найти все его корни или доказать, что корней у него нет.

Решить уравнение — значит найти множество его корней (множество корней может быть и пустым).

6. Первичное закрепление с проговариванием во внешней речи (7 мин.)

Решение №348(а, в), 349, 350(а) – проверка, является ли число корнем уравнения, №351 – решение уравнений.

№348(а, в)

х= 4 — корень
2х-7=5-х
2∙4-7=5-4
1=1

х = 3- корень – 2∙32 — 5∙3 — 3=18 — 15-3=0

х = -4- не корень – 2∙(-4) 2 — 5∙(-4) — 3=32 +20-3=49≠0

х = -½ корень – 2∙(½) 2 — 5∙(½) — 3= ½ + 5 /2 -3 = 3 -3 = 0

х = ½– не корень – 2∙(½) 2 — 5 ∙ ½ — 3= ½ – 5 /2 -3 = -2 -3 ≠ 0

№350(а)

х=1 – не корень – 1+ 6 + 5 – 6=6≠0

х=2 – не корень – 8 + 24 + 10 – 6= 36 ≠0

х=0 – не корень – 0 + 0 +0 – 6 ≠0

х=-1 – не корень – -1 + 6 – 5 – 6 = — 6 ≠0

х= -2 — корень – — 8 + 24 – 10 – 6 = 0

Обсуждение решений.

  • Какие затруднения при проверке корней уравнений вы испытали?
  • В каком случае можно допустить ошибки?
  • Что нужно повторить?

7. Физминутка (в виде игры). (2 мин.)

Учитель произносит суждение. Ученики, если считают суждение верным – хлопают, неверным топают.

  • Уравнение это равенство, содержащее переменную. (+)
  • Корень уравнения – это значение переменной, обращающее уравнение в верное числовое равенство. (+)
  • Уравнения могут иметь только один корень. (-)
  • Решить уравнение – значит найти множество его корней. (+)
  • Уравнение х 2 = -1 имеет 2 корня. (-)
  • Уравнение |х| = -5 не имеет корней. (+)

8. Самостоятельная работа с самопроверкой по эталону (5 мин.)

Прием «Пазлы» (собирается картинка с высказыванием А.Эйнштейна об уравнениях)

На основу с заданиями выкладываются части пазла с уравнениями, ответами, соответствующими заданиям. Приложение № 4

Цель деятельности учителя

х = 2 является корнем уравнения

х = — 2 является корнем уравнения

Уравнение не имеет корней

Число, при подстановке которого в уравнение получается верное числовое равенство.

Уравнение имеет 3 корня

Уравнение имеет бесконечно много корней

Равенство, содержащее переменную, обозначенную буквой

Источник

Adblock
detector
х = — 1 является корнем уравнения