Нобелевская премия по снам

Наука сна: за что вручили Нобелевскую премию по медицине

Нобелевский комитет Каролинского института Стокгольма в понедельник, 2 октября, сообщил, что Нобелевская премия 2017 года в области физиологии и медицины присуждена американским учёным Майклу Янгу, Джеффри Холлу и Майклу Росбашу за открытия молекулярных механизмов, контролирующих циркадный ритм.

«Они смогли проникнуть внутрь биологических часов организма и объяснить их работу», — отметили в комитете.

Циркадными ритмами называются циклические колебания различных физиологических и биохимических процессов в организме, связанных со сменой дня и ночи. Почти в каждом органе человеческого тела есть клетки, обладающие индивидуальным молекулярным часовым механизмом, а следовательно, циркадные ритмы представляют собой биологический хронометр.

Согласно релизу Каролинского института, Янгу, Холлу и Росбашу удалось изолировать у мух-дрозофил ген, контролирующий выделение особого белка в зависимости от времени суток.

«Таким образом, учёным удалось опознать белковые соединения, которые участвуют в работе этого механизма, и понять работу самостоятельной механики этого явления внутри каждой отдельной клетки. Теперь мы знаем, что биологические часы работают по такому же принципу в клетках других многоклеточных организмов, включая людей», — говорится в релизе комитета, присудившего премию.

Наличие биологических часов у живых организмов было установлено в конце прошлого века. Они расположены в так называемом супрахиазматическом ядре гипоталамуса головного мозга. Ядро получает информацию об уровне освещения от рецепторов на сетчатке глаза и посылает сигнал другим органам с помощью нервных импульсов и гормональных изменений.

Кроме того, некоторые клетки ядра, как и клетки других органов, обладают собственными биологическими часами, работу которых обеспечивают белки, активность которых меняется в зависимости от времени суток. От активности этих белков зависит синтез других белковых связей, которые порождают циркадные ритмы жизнедеятельности отдельных клеток и целых органов. Так, например, пребывание в помещении с ярким освещением в ночное время может сдвинуть циркадный ритм, активируя белковый синтез генов PER, обычно начинающийся утром.

Также на циркадные ритмы в организме млекопитающих значительное воздействие оказывает печень. Например, грызуны вроде мышей или крыс являются ночными животными и едят в тёмное время суток. Но если пища становится доступна только днём, их циркадный цикл печени смещается на 12 часов.

Ритм жизни

Циркадные ритмы — это суточные изменения деятельности организма. Они включают регуляцию сна и бодрствования, выделения гормонов, температуры тела и других параметров, которые изменяются в соответствии с суточным ритмом, поясняет врач-сомнолог Александр Мельников. Он отметил, что исследователи вели разработки в этом направлении несколько десятков лет.

«Прежде всего, нужно отметить, что это открытие не вчерашнего и не сегодняшнего дня. Эти исследования велись многие десятилетия — с 80-х годов прошлого века до настоящего времени — и позволили открыть один из глубинных механизмов, регулирующих природу организма человека и других живых существ. Механизм, которые открыли учёные, очень важен для влияния на суточный ритм организма», — рассказал Мельников.

По словам эксперта, эти процессы происходят не только из-за смены дня и ночи. Даже в условиях полярной ночи суточные ритмы будут продолжать действовать.

«Эти факторы очень важны, но очень часто у людей они нарушены. Эти процессы регулируются на генном уровне, что подтвердили лауреаты премии. В наше время люди очень часто меняют часовые пояса и подвергаются разным стрессам, связанным с резкими изменениями циркадного ритма. Напряжённый ритм современной жизни может влиять на правильность регулировки и возможности для отдыха организма», — заключил Мельников. Он уверен, что исследование Янга, Холла и Росбаша даёт возможность разработать новые механизмы воздействия на ритмы человеческого организма.

История премии

Учредитель премии Альфред Нобель в своём завещании поручил выбор лауреатов по физиологии и медицине Каролинскому институту в Стокгольме, основанному в 1810 году и являющемуся одним из ведущих образовательных и научных медицинских центров мира. В Нобелевском комитете университета пять постоянных членов, которые, в свою очередь, имеют право приглашать экспертов для консультаций. В списке номинантов на премию в этом году было 361 имя.

Нобелевская премия в области медицины присуждалась 107 раз 211 ученым. Её первым лауреатом стал в 1901 году немецкий врач Эмиль Адольф фон Беринг, разработавший способ иммунизации против дифтерии. Комитет Каролинского института считает самой значимой премию 1945 года, присуждённую британским учёным Флемингу, Чейну и Флори за открытие пенициллина. Некоторые премии со временем стали неактуальными, как, например, награда, присуждённая в 1949 году за разработку метода лоботомии.

Церемония награждения лауреатов по традиции состоится 10 декабря — в день кончины Альфреда Нобеля. Премии в области физиологии и медицины, физики, химии и литературы будут вручены в Стокгольме. Премия мира, согласно завещанию Нобеля, вручается в тот же день в Осло.

Источник

Открытие молекулярных механизмов работы циркадного ритма

Нобелевскую премию по физиологии и медицине в 2017 г. получили американские исследователи Майкл Янг, Джеффри Холл и Майкл Росбаш – ​за многолетние исследования генетических основ циркадных ритмов («биологических часов»). Янг работает в Нью-Йоркском университете Рокфеллера, а Холл и Росбаш – ​в Брандейском университете в Массачусетсе

Нобелевская премия в области физиологии и медицины в 2017 г. присуждена за открытие генов, определяющих работу биологических часов – ​внутриклеточного механизма, который управляет циклическими колебаниями интенсивности различных биологических процессов, связанных со сменой дня и ночи. Суточные или околосуточные (циркадные) ритмы присутствуют во всех живых организмах от цианобактерий до высших животных.

Нужно понимать, что любое достижение, которое награждается таким почетным титулом, опирается на исследования предшественников. Впервые представление о биологических часах возникло еще в XVII в., когда французский астроном Жан Жак де Меран обнаружил, что у растений суточный ритм движения листьев происходит даже в темноте, он «запрограммирован» в самом растении, а не обусловлен окружающей средой. С этого момента началась работа по изучению феномена. Было установлено, что практически все живые организмы способны формировать циклические процессы с суточным или околосуточным периодом. Оказалось, что при отсутствии главного внешнего фактора синхронизации – ​смены дня и ночи – ​организмы продолжают жить суточным ритмом, хотя период этого ритма в зависимости от индивидуальных особенностей становится немного короче или длиннее суток.

Генетическая основа биологических часов была впервые установлена в 1970-х гг., когда у плодовой мушки Drozophila melanogaster был открыт ген Per (от слова period). Это сделали Сеймур Бензер и его ученик Рональд Конопка из Калифорнийского технологического института. Они провели масштабный эксперимент, работая с сотнями линий мух и получая новые линии с помощью химического мутагенеза. Ученые заметили, что при одинаковом периоде освещения у некоторых мух период суточного ритма сна и бодрствования становился либо существенно меньше обычных суток (19 ч), либо больше (28 ч), а также появилась группа «аритмиков», у которых наблюдался полностью асинхронный цикл. Пытаясь понять, можно ли идентифицировать гены, которые контролируют циркадный ритм у дрозофил, ученые продемонстрировали, что циркадные ритмы мух нарушают мутации неизвестного гена или группы генов.

Читайте также:  Ловцы снов тату акварель

Таким образом, будущие лауреаты Нобелевской премии Холл, Росбаш и Янг уже имели в своем распоряжении линии мух с генетически обусловленными изменениями периода сна и бодрствования. В 1984 г. они выделили и секвенировали ген Per и выяснили, что уровень кодируемого им белка меняется с суточной периодичностью, достигая пика в ночное время и снижаясь днем.

Позднее у млекопитающих было открыто целое семейство генов циркадных ритмов: Bmal1, Clock, Cry1—2, Per1—3, механизм работы которых также подчиняется принципу обратной связи. Белки BMAL1 и CLOCK активируют гены Per и Cry, в результате чего синтезируются белки PER и CRY. Когда их становится много, они начинают угнетать активность BMAL1 и CLOCK, тем самым подавляя свой синтез. Когда количество PER и CRY снижается до определенного уровня, вновь активируются BMAL1 и CLOCK – ​и так далее

Удостоенное Нобелевской премии открытие дало новый толчок к тому, чтобы пытаться понять, почему механизмы циркадных ритмов работают так, а не иначе, почему период различается межиндивидуально и устойчив к внешним факторам, таким как температура (Pittendrich, 1960). Например, работы, выполненные на цианобактериях, показали, что с повышением температуры на 10 °C водоросли сохраняют циклические процессы, и их период изменяется всего на 10—15 %, тогда как по законам химической кинетики должен измениться в два раза. Последнее стало настоящим вызовом, поскольку все биохимические реакции должны подчиняться законам химической кинетики.

Сейчас ученые сошлись во мнении, что период устойчив потому, что суточный цикл определяется не одним геном и продуцируемым им белком. В 1994 г. Янг открыл у дрозофилы ген Tim, кодирующий белок, участвующий в управлении уровнем белка PER по принципу обратной связи. При повышении температуры возрастает как наработка белков, участвующих в формировании циркадного цикла, так и наработка других белков, которые ее тормозят, а работа биологических часов не сбивается.

Сейчас известны базовые механизмы циркадных ритмов, но множество деталей остаются непонятными. Например, как в одном организме одновременно сосуществуют несколько «часов», как реализуется несколько процессов, идущих с разным периодом? Когда проводились эксперименты, во время которых люди жили в помещениях или в пещере без информации о времени дня и ночи, их температура тела, секреция стероидных гормонов и т. п. имели период около 25 ч. При этом периоды сна и бодрствования, хотя в среднем также держались около суточного, у некоторых варьировались от 15 до 60 ч (Wever, 1975).

Изучение циркадных ритмов важно и для понимания функционирования организма в экстремальных условиях, например в Арктике, когда во время полярного дня и ночи исчезают естественные факторы синхронизации суточных ритмов. Существуют убедительные данные о том, что при долгом пребывании в такой среде у человека происходят существенные изменения суточных ритмов целого ряда функций организма (Мошкин, 1984). Сейчас становится понятно, что это один из факторов, который влияет на здоровье человека, и когда известна молекулярная основа циркадных ритмов, можно анализировать, какие варианты генов более или менее благоприятны для работы в полярных условиях.

Циркадные ритмы влияют на обменные процессы, работу иммунной системы и процесс воспаления, на кровяное давление, температуру тела, функции мозга и многое другое. От времени суток зависят эффективность некоторых лекарств и их побочные эффекты. При вынужденном несоответствии внутренних часов и внешних, например, в результате широтного перелета или работы в ночную смену, могут наблюдаться разнообразные дисфункции организма: расстройства желудочно-кишечного тракта и сердечно-сосудистой системы, депрессии, повышается риск развития онкологических заболеваний.

Мошкин М. П. Влияние естественного светового режима на биоритмы полярников // Физиология человека. 1984. Т. 10. № 1. С. 126—129.

Pittendrigh C. S. Circadian rhythms and the circadian organization of living systems // Cold Spring Harb Symp Quant Biol. 1960. V. 25. P. 159—184.

Wever R. The circadian multi-oscillator system of man // Int J Chronobiol. 1975. V. 3. N. 1. P. 19—55.

Источник

Нобелевская премия за биоритмы — что открыли три американца

Итак, для тех людей, которые занимаются наукой или говорят и пишут о ней, настала самая важная неделя в году. Традиционно в первую неделю октября Нобелевский комитет объявляет лауреатов Нобелевской преми. И традиционно первыми мы узнаем лауреатов премии по физиологии или медицине (да-да, почему-то в русском языке этот союз превратился в «и», но правильно – или одно, или другое).

В 2017 году Каролинский институт, который присуждает эти премии, удивил всех. Не секрет, что многие эксперты и агентства выступают с пророчествами и предсказаниями лауреатов. В этом году впервые с предсказаниями выступило агентсво Clarivate Analytics, которое выделилось из агенство Thomson Reyters. В области премии по медицине они предсказывали победу Льюису Кэнтли за открытие белка, который отвечает за развитие рака и диабета, Карлу Фристону за методы нейровизуализации и супругам Юань Чань и Патрику Муру за открытие вируса герпеса, которое вызывает саркому Капоши.

Однако неожиданно для всех премию получили три американца (что совсем не неожиданно) за открытие молекулярных механизмов циркадных ритмов – внутренних молекулярных часов человека, животных и растений. Да, почитай, почти всех живых существ. Того самого, что называют биоритмы.

Что же открыли Майкл Янг из Рокфеллеровского университета в Нью-Йорке, Майкл Росбаш из Университета Брэндейса и Джеффри Холл из Университета штата Мэн?

Для начала скажем, что циркадные ритмы (от латинского circa – кругом и diem – день) они НЕ открыли. Первые намеки на это появились еще в древности (и неудивительно, все мы днем бодрствуем, а ночью – спим). Ген, отвечающий за работу внутренних часов тоже открыт не нашими героями. Эту серию экспериментов провели на мухах-дрозофилах Сеймур Бензер и Рональд Конопка. Они смогли найти мутантных мушек, в которых длительность циркадных ритмов была не 24 часа, как у живущих в природе (или как у людей), а 19 или 29 часов, или вообще никаких циркадных ритмов не наблюдалось. Именно они открыли ген period, который «рулит» ритмами. Но увы, Бензер умер в 2007, Конопка – в 2015 году, так и не дождавшись своей Нобелевской премии. Так часто бывает в науке.

Итак, сам ген period или PER, кодирует белок PER, который и дирижирует оркестром циркадных ритмов. Но как он это делает, и как достигается цикличность всех процессов? Холл и Росбаш предложили гипотезу, согласно которой белок PER попадает в ядро клетки и блокирует работу собственного гена (как мы помним, гены – это лишь инструкция по сборке белка. Один ген – один белок). Но как это происходит? Джеффри Холл и Майкл Росбаш показали, что белок PER накапливается в ядре клетки за ночь, а днем расходуется, но не понимали, как ему удается попадать туда. И тут на помощь пришел третий лауреат, Майкл Янг. В 1994 году он открыл еще один ген, timeless («без времени»), который тоже кодирует белок – TIM. Именно Янг показал, что в ядро клетки PER может попасть только соединившись с белком TIM.

Читайте также:  Как правильно принимать сон

Итак, подведем итог первого открытия: Когда ген period активен, в ядре производится так называемая матричная РНК белка PER, по которой, как по образцу, в рибосоме будет производиться белок. Эта матричная РНК выходит из ядра в цитоплазму, становясь матрицей для производства белка PER. Дальше петля замыкается: белок PER накапливается в ядре клетки, когда активность гена period заблокирована. Дальше Янг открыл еще один ген, doubletime – «двойное время», который кодирует белок DBT, который может «настроить» накапливание белка PER, смещая его во времени. Именно благодаря этому мы можем подстроиться к изменению часового пояса и продолжительности дня и ночи. Но – если мы очень быстро меняем день на ночь, белок не успевает за реактивным самолетом, и случается джет-лаг.

Нужно отметить, что премия 2017 года – это первая премия за 117 лет, которая хоть как-то относится к циклу сна и бодрствования. Помимо открытия Бензера и Конопки, своих премий не дождались и другие исследователи суточных ритмов и процессов сна, такие, как одна из основательниц хронобиологии Патрисия ДеКорси, первооткрыватель «быстрой» фазы сна Юджин Азеринский, один из отцов сомнологии Натаниэль Клейтман… Так что можно назвать нынешнее решение Нобелевского комитета знаковым для всех, кто работает в этой тематике.

Источник

Тик-так по-шведски. Нобелевская премия за циркадные ритмы

Тик-так по-шведски. Нобелевская премия за циркадные ритмы

Авторы
Редакторы

Сегодня утром, 2 октября, в Каролинском Университете в Швеции объявили лауреатов Нобелевской премии по физиологии и медицине за 2017 год. Ими стали американские исследователи Джеффри Холл, Майкл Росбаш и Майкл Янг. Премия будет вручена «за открытие молекулярных механизмов контроля циркадных ритмов». Что же это за ритмы и какие механизмы ими управляют? Почему это настолько важно?

— Наступает ночь. Город засыпает, просыпается мафия.

То, что активность живых существ зависит от времени суток, было известно испокон веков. Все знают, что коровы пасутся днем, петухи кричат утром, а котята хватают спящих людей за пятки в два часа ночи. У каждого вида живых существ, от одноклеточных цианобактерий до огромных многотонных китов и вековых деревьев, периоды активности сменяются периодами отдыха, в определенное время дня выбрасываются те или иные гормоны, листья сворачиваются и разворачиваются как по часам. Но что это за часы? Какова их природа? Немало копий было сломано за те 300 лет, что люди пытались ответить на эти вопросы. Нобелевскую премию в этом году заслуженно дали людям, которые поставили если не точку, то как минимум жирную черту, разделившую науку о механизмах, обусловливающих циркадные ритмы, на «до» и «после».

История вопроса

Наиболее логичным ответом на вопрос, откуда берется эта периодическая активность, представляются солнечные часы. Мол, солнце встает, активность «дневных» видов повышается, а «ночных» снижется. Основным регулятором является освещенность, а также сопутствующие ей факторы — рост и падение температуры, смена направления ветра и все в том же духе. Эта парадигма активно применялась еще древними римлянами, день которых начинался в момент восхода солнца над горизонтом, а ночь — в момент захода. Так как и день, и ночь состояли из 12 часов, длина часа у римлян зависела как от того, ночной это час или дневной, так и от времени года.

Первым проверить, действительно ли именно внешние факторы определяют активность живых существ, взялся французский астроном Жан-Жак де Меро в начале 18 века. В качестве модельного организма он использовал мимозу, которая очень явно реагирует на смену дня и ночи — в светлое время ее маленькие нежные листочки развернуты к солнцу, а в темное сложены и опущены вниз. Де Меро поместил мимозу в темный ящик и с удивлением наблюдал, как еще около недели она своевременно сворачивала и разворачивала листочки несмотря на отсутствие стимуляции светом (рис. 1). На основе этого он сделал предположение, что ритм этого процесса задается изнутри, а не снаружи.

Рисунок 1. Опыт Де Меро. Астроном заметил, что мимоза сохраняет способность утром разворачивать листочки, а ночью сворачивать их обратно даже без воздействия солнечного света.

Как чаще всего происходит в таких случаях, новое явление до поры до времени было забыто, а в начале 20 века переоткрыто. На протяжении многих десятилетий велись жаркие дебаты между идеологами «внутренних часов» и «факторов среды», пока в 1971 году не была опубликована прорывная статья калифорнийских ученых, где они показали, что циркадные ритмы имеют генетическую природу. Идея нетривиальная, так как даже сторонники «внутренних часов» считали, что если они и имеют генетическую природу, то число задействованных генов должно быть очень велико, и повлиять мутациями на этот признак значимо не выйдет.

В качестве модели использовали плодовых мушек дрозофил. Время было дикое, амплификаторы [1] и секвенаторы [2] еще не изобрели, а вместо пипеток в лабораториях были каменные топоры. Экспериментаторы лили на яйца мушек мутагены, вызывая изменения в случайных генах. И сумели получить три разных по «ритмике» линии дрозофил. Первая линия имела циркадный ритм продолжительностью 28 часов, вторая — 19 часов, а в третьей обычно ритмические параметры вообще не подчинялись никакому заметному циклу (рис. 2). Путем долгих изысканий методами классической генетики исследователи смогли локализовать ответственный за изменения участок. Это оказался ген в половой Х-хромосоме, который был назван period [3]. На тот момент, в отсутствие молекулярных методов, двигаться дальше было невозможно. Что это за ген и как он работает — осталось загадкой.

Рисунок 2. Мутантные дрозофилы с нарушенными циркадными ритмами. Различные мутации в гене period могут изменить продолжительность циркадного цикла в бóльшую или меньшую сторону или даже полностью его уничтожить.

За что же дали Нобеля?

В середине 1980-х, когда каменные топоры уже отошли на второй план, а в лабораториях биологов робко обживались первые амплификаторы, в США над проблемой циркадных ритмов работали две группы. Первая под руководством Джеффри Холла и Майкла Росбаша трудилась в Брандейском университете в Массачусетсе, вторая под руководством Майкла Янга — в университете Рокфеллера в Нью-Йорке. Примерно одновременно эти группы смогли клонировать ген period, секвенировать и изучить его последовательность. Первые данные о структуре гена и кодируемого им белка не дали ясного ответа о механизмах его работы, породив множество курьезных теорий.

Читайте также:  Корзина с картошкой сонник

Непонятно было, прежде всего, на каком уровне действовал этот ген. Бóльшая часть строившихся тогда предположений относила его продукт, получивший название PER, к мембранным белкам, которые либо регулируют доступ в клетку какого-либо действующего вещества извне, либо изменяют характер взаимодействия клеток между собой. Одно было ясно — должен существовать некоторый осциллятор с периодом в 24 часа и его работа должна быть напрямую связана с белком PER.

И этот осциллятор был найден — им оказался, как ни странно, сам белок PER. Холл и Росбаш показали, что в нейронах мухи концентрация этого белка имеет 24-часовую цикличность с пиком около полуночи. Такому же циклу оказалась подвержена мРНК этого белка, однако пик ее концентрации оказался сдвинут на несколько часов раньше по отношению к пику белка (обычно такие пики должны совпадать). Исследователи получили нонсенс-мутантов по этому белку (при этом мРНК синтезируется, а белок — нет) и увидели, что при этом периодические изменения концентрации мРНК пропадают. Вывод последовал незамедлительно — белок PER является ядерным модулятором транскрипции и блокирует собственный синтез (рис. 3а).

Рисунок 3. В организме действует осциллятор, состоящий из белков, негативно регулирующих экспрессию собственной мРНК. За счет разветвленной системы положительных и отрицательных регуляторов осциллятор имеет период примерно в 24 часа и может подстраивать свою работу под изменения светового дня.

На основе этого вывода предложили гипотезу TTFL (Transcription-Translation Feedback Loop — транскрипционно-трансляционной обратной связи). Согласно этой гипотезе, осциллятор, отвечающий за циркадные ритмы, состоит из одного или нескольких белков, которые контролируют собственную экспрессию при помощи негативной регуляции транскрипции и/или трансляции. Было понятно, что один ген period не способен полностью построить циркадный ритм, ему нужны партнеры.

Этих партнеров обнаружил Майкл Янг. Он выявил ген, названный им timeless, мРНК и продукт которого (белок TIM) также подвергались 24-часовым осцилляциям. Оказалось, что белки PER и TIM могут попасть в ядро только провзаимодействовав друг с другом. Один без другого работать не способен и даже более того — без связи они моментально разрушаются в протеасоме. Вместе же они попадают в ядро и блокируют собственную экспрессию (рис. 3а).

В дальнейшем обнаружили также и позитивные регуляторы экспрессии этих генов, что еще сильнее усложнило картину. Выявили и взаимосвязи со средовыми факторами. Те, кто пересекал в ходе путешествий множество часовых поясов, знают, что при этом организм поначалу не может подстроиться под новый световой день, но через несколько дней циркадные ритмы синхронизируются с реальностью, и жизнь снова становится прекрасна, а сон крепок.

За такую настройку, как оказалось, отвечает целый набор белков-регуляторов, воздействующих на все тот же осциллятор PER-TIM (рис. 3б). Например, Янг обнаружил белок CRY, который активируется в ответ на повышение внешней освещенности, связывает TIM и отправляет его на деградацию. Таким образом, раннее или позднее утро меняют характеристики пика TIM, что в свою очередь меняет профиль экспрессии PER. Через несколько дней циркадный ритм стабилизируется в новом положении.

Все эти данные и успешно подтвержденные гипотезы довольно сильно изменили наше понимание циркадных ритмов. Теория о внутреннем осцилляторе была однозначно подтверждена благодаря усилиям Холла, Росбаша и Янга, за что они вполне заслуженно получили Нобелевскую премию [4]. Но исследования этой интересной области все еще продолжаются.

Не мухами едиными.

Мухи — это, конечно, хорошо, но что там у млекопитающих вообще и у человека в частности? У нас всё оказалось похоже в общем, но отлично в деталях. Циркадные ритмы у млекопитающих делятся на центральные и периферические. Центральным регулятором выступает супрахиазматическое ядро гипоталамуса в головном мозге [5]. При изменении ритма освещенности оно первое перестраивает свой цикл активности системы белков PER. Под контролем этого ядра идет выделение мелатонина (гормона сна) в эпифизе, через который оно регулирует циркадные ритмы в остальных тканях организма.

На белки циркадного каскада оказались завязаны многие физиологические функции клеток и тканей (рис. 4). Например, утром инсулиновый ответ поджелудочной железы на потребление углеводов более яркий, чем вечером. И это даже не получается объяснить ночной «голодовкой» — животные, которым 24 часа с постоянной скоростью вводили в кровь глюкозу, имели наименьший ее уровень (и наибольший уровень инсулина) утром. Аналогично меняется усвоение жиров и белков. Таким образом, совет «не есть после 18», столь частый в фитнес-журналах, оказывается, имеет под собой физиологическое обоснование [6].

Рисунок 4. Многие аспекты функционирования человеческого организма зависят от времени суток и контролируются циркадными ритмами.

Циркадные ритмы вообще влияют почти на все области нашей физиологии. От времени суток зависят наша работоспособность, уровни почти всех основных гормонов, заболевания и так далее. Разумеется, уже есть группы, осваивающие гранты в вопросах связи нарушенных циркадных ритмов и рака, нейродегенеративных и сердечно-сосудистых заболеваний [7] и других интересных тем.

Очень перспективными являются исследования связи циркадных ритмов и старения. Известно, что супрахиазматическое ядро с возрастом деградирует и к старости работает уже не так регулярно. Старые люди достоверно хуже адаптируются к смене часовых поясов, хуже переносят вынужденное бодрствование и восстанавливаются во время сна. На грызунах исследователи показали, что нарушение генов циркадных ритмов ведет к значительному снижению продолжительности их жизни и, что довольно интересно, к более раннему появлению «старческих» заболеваний [8].

Дальнейшее развитие

В настоящий момент циркадная биология развивается бешеными темпами. Изучают варианты фармакологического воздействия на циркадные ритмы, особенно нарушенные вследствие перелетов, возраста или заболеваний. В аптеках уже можно купить препараты мелатонина для путешественников.

Хотя система TTFL, основанная на белках PER и TIM, является самой заметной среди циркадных часов, она не является единственной [9]. C момента совершения основных открытий группами Холла/Росбаша и Янга было открыто еще несколько вариантов. Например, система белков Kai, управляющая циркадными ритмами цианобактерий, основана не на синтезе/распаде, а на фосфорилировании/дефосфорилировании ключевого белка KaiC [10]. Благодаря этому, данную систему удалось воспроизвести в пробирке — смешение всех необходимых белков и их субстратов привело к возникновению молекулярных часов без участия живой клетки.

Да и сама система TTFL еще не изучена до предела. То, что мы обнаружили осциллятор и разобрались в тонкостях его работы и регуляции — это, конечно, прекрасно. Но остается еще масса вопросов касательно его взаимодействия с различными биохимическими каскадами и физиологическими функциями наших клеток. Так что для будущих исследователей тут есть еще масса работы.

Источник

admin
Упражнения для здорового тела
Adblock
detector