как перевести в обратный код

Содержание
  1. Обратный и дополнительный коды двоичных чисел
  2. Прямой, обратный и дополнительный коды двоичного числа
  3. Прямой код
  4. Обратный код
  5. Дополнительный код
  6. Представление чисел в ЭВМ
  7. Целые числа
  8. Вещественные числа (числа с плавающей точкой)
  9. Представление целых чисел: прямой код, код со сдвигом, дополнительный код
  10. Содержание
  11. Прямой код [ править ]
  12. Достоинства представления чисел с помощью прямого кода [ править ]
  13. Недостатки представления чисел с помощью прямого кода [ править ]
  14. Код со сдвигом [ править ]
  15. Достоинства представления чисел с помощью кода со сдвигом [ править ]
  16. Недостатки представления чисел с помощью кода со сдвигом [ править ]
  17. Дополнительный код (дополнение до единицы) [ править ]
  18. Достоинства представления чисел с помощью кода с дополнением до единицы [ править ]
  19. Недостатки представления чисел с помощью кода с дополнением до единицы [ править ]
  20. Дополнительный код (дополнение до двух) [ править ]
  21. Длинная арифметика для чисел, представленных с помощью кода с дополнением до двух [ править ]
  22. Достоинства представления чисел с помощью кода с дополнением до двух [ править ]
  23. Недостатки представления чисел с помощью кода с дополнением до двух [ править ]
  24. Коды для представления чисел

Обратный и дополнительный коды двоичных чисел

l4 image002equation distanceprojection image013 piramid linep image002

Пример перевода
x1=10101-[x1]пр=010101
x2=-11101-[x2]пр=111101
x3=0,101-[x3]пр=0,101
x4=-0,111-[x4]пр=1,111
2) Обратный код числа, используется для выполнения арифметических операций вычитания, умножения, деления, через сложение. Обратный код положительного числа совпадает с его прямым кодом, обратный код отрицательного числа формируется по правилам: в знаковом разряде записывается “1”; цифровые значения меняются на противоположные.

3) Дополнительный код числа, имеет такое же назначение, как и обратный код числа. Формируется по следующим правилам: положительные числа в дополнительном коде выглядят также как и в обратном и в прямом коде, т.е. не изменяются. Отрицательные числа кодируются следующим образом: к обратному коду отрицательного числа (к младшему разряду) добавляется 1, по правилу двоичной арифметики.

Пример перевода
x1=10101-[x1]доп=010101
x2=-11101-[x2]обр=100010+1-[x2]доп=100011
x3=0,101-[x3]доп=0,101
x4=-0,111-[x4]обр=1,000+1-[x4]доп=1,001
Для выявления ошибок при выполнении арифметических операций используются также модифицированные коды: модифицированный прямой; модифицированный обратный; модифицированный дополнительный, для которых под код знака числа отводится два разряда, т.е. “+”=00; ”-”=11. Если в результате выполнения операции в знаковом разряде появляется комбинация 10 или 01 то для машины это признак ошибки, если 00 или 11 то результат верный.

Источник

Прямой, обратный и дополнительный коды двоичного числа

Прямой код двоичного числа
Обратный код двоичного числа
Дополнительный код двоичного числа

Pryamoy obratnyiy i dopolnitelnyiy kod
Мы знаем, что десятичное число можно представить в двоичном виде. К примеру, десятичное число 100 в двоичном виде будет равно 1100100, или в восьмибитном представлении 0110 0100. А как представить отрицательное десятичное число в двоичном виде и произвести с ним арифметические операции? Для этого и предназначены разные способы представления чисел в двоичном коде.
Сразу отмечу, что положительные числа в двоичном коде вне зависимости от способа представления (прямой, обратный или дополнительный коды) имеют одинаковый вид.

Прямой код

Znakovyiy razryad pryamogo koda

Обратный код

Для неотрицательных чисел обратный код двоичного числа имеет тот же вид, что и запись неотрицательного числа в прямом коде.
Для отрицательных чисел обратный код получается из неотрицательного числа в прямом коде, путем инвертирования всех битов (1 меняем на 0, а 0 меняем на 1).
Для преобразования отрицательного числа записанное в обратном коде в положительное достаточного его проинвертировать.

Dvoichnoe chislo v obratnom kode

Арифметические операции с отрицательными числами в обратном коде:

Дополнительный код

В дополнительном коде (как и в прямом и обратном) старший разряд отводится для представления знака числа (знаковый бит).

Predstavlenie chisel v dopolnitelnom kode

Dopolnitelnyiy kod

Арифметические операции с отрицательными числами в дополнительном коде

Вывод:
1. Для арифметических операций сложения и вычитания положительных двоичных чисел наиболее подходит применение прямого кода
2. Для арифметических операций сложения и вычитания отрицательных двоичных чисел наиболее подходит применение дополнительного кода

rating onrating onrating onrating on rating half(35 голосов, оценка: 4,69 из 5)

Источник

Представление чисел в ЭВМ

Целые числа

Для числа +1101 :

Прямой код Обратный код Дополнительный код
0,0001101 0,0001101 0,0001101

Вещественные числа (числа с плавающей точкой)

i1 image001

0.15625 = 001012
446.15625 = 110111110,001012 = 1,1011111000101*2 8

Знак S = 0
Порядок P = 8 + 1023 = 103110 = 100000001112
Мантисса: 1011111000101
Для числа с двойной точностью мантисса занимает 52 разряда. Добавляем нули.
Мантисса: 1011 1110 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000
Запишем число:
0 10000000111 1011 1110 0010 1000 0000 0000 0000 0000 0000 0000 0000 0000 0000
В шестнадцатеричной системе счисления: 407BE2800000000016

455,375 = 111000111,01102 = 1,110001110110*2 8 2

Дан код величины типа Double. Преобразуйте его число.
а) 408B894000000000;
Представим в двоичном коде:
010000001000 1011 1000 1001 0100 0000 0000 0000 0000 0000 0000 0000 0000 0000
где
S = 0 (положительное число)
P = 100000010002 = 1032 – 1023 = 9
M = 10111000100101
N = 1,10111000100101
С учетом P = 9, N = 1101110001,00101

1101110001 = 2 9 *1 + 2 8 *1 + 2 7 *0 + 2 6 *1 + 2 5 *1 + 2 4 *1 + 2 3 *0 + 2 2 *0+ 2 1 *0 + 2 0 *1 = 512 + 256 + 0 + 64 + 32 + 16 + 0 + 0 + 0 + 1 = 881

б) C089930000000000.
Представим в двоичном коде:
1 10000001000 100110010011000000000000000000000000 0000 0000 0000 0000
где
S = 1 (отрицательное число)
P = 100000010002 = 1032 – 1023 = 9
M = 100110010011
N =1,100110010011
С учетом P = 9, N = 1100110010,011

1100110010 = 2 9 *1 + 2 8 *1 + 2 7 *0 + 2 6 *0 + 2 5 *1 + 2 4 *1 + 2 3 *0 + 2 2 *0 + 2 1 *1 + 2 0 *0 = 512 + 256 + 0 + 0 + 32 + 16 + 0 + 0 + 2 + 0 = 818

Источник

Представление целых чисел: прямой код, код со сдвигом, дополнительный код

Выбор способа хранения целых чисел в памяти компьютера — не такая тривиальная задача, как могло бы показаться на первый взгляд. Желательно, чтобы этот способ:

Рассмотрим разные методы представления.

Содержание

Прямой код [ править ]

230px %D0%9F%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 %D0%B4%D0%B2%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D1%85 %D1%87%D0%B8%D1%81%D0%B5%D0%BB %D0%B2 %D0%BF%D1%80%D1%8F%D0%BC%D0%BE%D0%BC %D0%BA%D0%BE%D0%B4%D0%B5

Достоинства представления чисел с помощью прямого кода [ править ]

Недостатки представления чисел с помощью прямого кода [ править ]

Из-за весьма существенных недостатков прямой код используется очень редко.

Код со сдвигом [ править ]

230px %D0%9F%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 %D0%B4%D0%B2%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D1%85 %D1%87%D0%B8%D1%81%D0%B5%D0%BB %D0%B2 %D0%BA%D0%BE%D0%B4%D0%B5 %D1%81%D0%BE %D1%81%D0%B4%D0%B2%D0%B8%D0%B3%D0%BE%D0%BC

По сути, при таком кодировании:

Достоинства представления чисел с помощью кода со сдвигом [ править ]

Недостатки представления чисел с помощью кода со сдвигом [ править ]

Из-за необходимости усложнять арифметические операции код со сдвигом для представления целых чисел используется не часто, но зато применяется для хранения порядка вещественного числа.

Дополнительный код (дополнение до единицы) [ править ]

%D0%9F%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 %D1%87%D0%B8%D1%81%D0%B5%D0%BB %D0%B4%D0%BE%D0%BF%D0%BE%D0%BB%D0%BD%D0%B5%D0%BD%D0%B8%D0%B5%D0%BC %D0%B4%D0%BE %D0%B5%D0%B4%D0%B8%D0%BD%D0%B8%D1%86%D1%8B

В качестве альтернативы представления целых чисел может использоваться код с дополнением до единицы (англ. Ones’ complement).

Алгоритм получения кода числа:

Достоинства представления чисел с помощью кода с дополнением до единицы [ править ]

Недостатки представления чисел с помощью кода с дополнением до единицы [ править ]

Дополнительный код (дополнение до двух) [ править ]

230px %D0%9F%D1%80%D0%B5%D0%B4%D1%81%D1%82%D0%B0%D0%B2%D0%BB%D0%B5%D0%BD%D0%B8%D0%B5 %D0%B4%D0%B2%D0%BE%D0%B8%D1%87%D0%BD%D1%8B%D1%85 %D1%87%D0%B8%D1%81%D0%B5%D0%BB %D0%B2 %D0%B4%D0%BE%D0%BF%D0%BE%D0%BB%D0%BD%D0%B8%D1%82%D0%B5%D0%BB%D1%8C%D0%BD%D0%BE%D0%BC %D0%BA%D0%BE%D0%B4%D0%B5

Чаще всего для представления отрицательных чисел используется код с дополнением до двух (англ. Two’s complement).

Алгоритм получения дополнительного кода числа:

Длинная арифметика для чисел, представленных с помощью кода с дополнением до двух [ править ]

Достоинства представления чисел с помощью кода с дополнением до двух [ править ]

Недостатки представления чисел с помощью кода с дополнением до двух [ править ]

Несмотря на недостатки, дополнение до двух в современных вычислительных системах используется чаще всего.

Источник

Коды для представления чисел

При выполнении арифметических операций в ЭВМ применяют специальные коды для представления чисел (с целью упрощения арифметических операций): прямой, обратный и дополнительный коды чисел. Например, упрощается определение знака результата операции, вычитание есть сложение кодов, облегчено определение переполнения разрядной сетки.

Прямой код (представление в виде абсолютной величины со знаком) двоичного числа – это само двоичное число, в котором все цифры, изображающие его значение, записываются как в математической записи, а знак числа записывается двоичной цифрой.

Итак, прямой код почти не отличается от принятого в математике: для выявления абсолютной величины (модуля) числа, надо отбросить цифру, обозначающую его знак. В n–разрядном двоичном слове n–1 значащих разрядов представляют абсолютную величину числа (Старший бит слова является битом хранения знака или знаковым разрядом. Все последующие биты слова представляют значащие разряды числа).

Прямой код используется при хранении чисел в памяти ЭВМ, а также при выполнении операций умножения и деления, но формат представления чисел в прямом коде неудобен для использования в вычислениях, поскольку сложение и вычитание положительных и отрицательных чисел выполняется по–разному, а потому требуется анализировать знаковые разряды операндов. Поэтому прямой код практически не применяется при реализации в АЛУ арифметических операций над целыми числами. Вместо этого формата широкое распространение получили форматы представления чисел в обратном и дополнительном кодах.

Пример: Дано число X=-1011. Перевести число в прямой код.

Обратный код положительного числа совпадает с прямым, а при записи отрицательного числа все его цифры, кроме цифры, изображающей знак числа, заменяются на противоположные (0 заменяется на 1, а 1 – на 0).

Пример: Дано число X=-1011. Перевести число в обратный код.

Дополнительный код (представление в виде дополнения до двойки) положительного числа совпадает с прямым, а код отрицательного числа образуется как результат увеличения на 1 его обратного кода.

Иными словами, процесс построения дополнительного кода отрицательного числа можно разбить на два этапа – построить обратный код, а затем из него построить дополнительный.

Пример: Дано число X=-1011. Перевести в дополнительный код.

Пример: Дано число X=-0,1011. Перевести число в прямой, обратный и дополнительный код, при условии, что разрядная сетка содержит 8 разрядов.

Источник

Общеобразовательный справочник
Adblock
detector